Version 0.2.0-7
Finding the fun, while teaching machine learning with microcontrollers to the general population.
QR Code is for this link https://hpssjellis.github.io/tinyMLjs/public/acceleration/a00-best-acceleration.html To the main acceleration TinyMLjs webpage
TinyMLjs by Jeremy Ellis. My Github Profile at https://github.com/hpssjellis
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
println()
command to a desktop or laptop computer. We can clean the data if necessary, convert it to a tensor, train a machine learning model, load more data, clean and classify it, and finally send the classification results back to the microcontroller (e.g., turning on an LED, etc).</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
Let’s have a look at sections of the webpage:
Click Choose Files
to select CSV files. Currently, the file name is important, and there are no column headings—just raw, cleaned data.
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
Information here about number of samples, and sensors. Click Convert Data to Tensor
then Train Model
. View console ctrl-shift-i for any issues
Here we can save the model or upload a previously saved model. Note: Labels are not loaded with the model. This is a work in progress.
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
This section focuses on tuning a vision model.
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
Here, we can tune a sound model.
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
This section demonstrates the model for acceleration or any other sensor combination.
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
Here is where we connect a microcontroller Connect via Serial Port
Then Clear and send Start
If needed Clean
the data and check the label name and Keep
and/or Save CSV
checking the file name.
When using more than two labels, you can return to the model training part of the webpage to train your model.
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
Now it is time to test your model. Load more data, clean if needed and click Classify Data
Note that the code to be loaded onto the Nano33BleSense (Rev1) is displayed in the textarea for easy copying.
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
Tutorial playlist Video here
Direct link https://youtu.be/3f4led32SL8
The github is at: https://github.com/hpssjellis/tinyMLjs
The index webpage is at https://hpssjellis.github.io/tinyMLjs/public/index.html
While this presentation represents a starting point, it demonstrates that powerful, proof of concept, end-to-end machine learning on edge devices does not have to rely on the cloud or specific hardware. It can be done in the field or in a classroom without internet access.
By Jeremy Ellis @rocksetta
Github Profile at https://github.com/hpssjellis
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>
</br>